
The Circadian System: A Regulatory
Feedback Network of Periphery and
Brain

Circadian rhythms are generated by the autonomous circadian clock, the

suprachiasmatic nucleus (SCN), and clock genes that are present in all tissues.

The SCN times these peripheral clocks, as well as behavioral and physiological

processes. Recent studies show that frequent violations of conditions set by

our biological clock, such as shift work, jet lag, sleep deprivation, or simply

eating at the wrong time of the day, may have deleterious effects on health.

This infringement, also known as circadian desynchronization, is associated

with chronic diseases like diabetes, hypertension, cancer, and psychiatric

disorders. In this review, we will evaluate evidence that these diseases stem

from the need of the SCN for peripheral feedback to fine-tune its output and

adjust physiological processes to the requirements of the moment. This feed-

back can vary from neuronal or hormonal signals from the liver to changes in

blood pressure. Desynchronization renders the circadian network dysfunc-

tional, resulting in a breakdown of many functions driven by the SCN, disrupt-

ing core clock rhythms in the periphery and disorganizing cellular processes

that are normally driven by the synchrony between behavior and peripheral

signals with neuronal and humoral output of the hypothalamus. Consequently,

we propose that the loss of synchrony between the different elements of this

circadian network as may occur during shiftwork and jet lag is the reason for

the occurrence of health problems.
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Almost all organisms are subject to cyclic environ-
mental changes, enforcing a day-night rhythm on
their physiology. Adapting to this cyclic world, or-
ganisms have evolved circadian systems synchro-
nizing behavioral and physiological rhythms for
optimal anticipation of changes in activity and
food availability (15). In mammals, the circadian
system consists of a central pacemaker, the supra-
chiasmatic nucleus (SCN), and of peripheral oscil-
lators found in almost all cell types in brain and
body that resonate with circadian cues originating
from the SCN (61). The SCN is located above the
optic chiasm (suprachiasmatic), through which it
receives photic information. This photic informa-
tion serves to synchronize the activity of the SCN to
the daily light-dark cycle. The bilaterally paired
SCN is composed of a dense network of �20,000
interconnected neurons (115). A molecular clock
mechanism inside each individual SCN neuron
produces an �24-h rhythm through autoregulatory
transcription-translation feedback loops involving

clock genes (80). Interestingly, for more than two
decades it has been demonstrated that a molecular
clock machinery of similar composition is also
present in nearly all cells of the body. Importantly,
these peripheral clock genes are mainly driven by
SCN output, whereby, in principle, all SCN-driven
outputs, hormonal (i.e., melatonin and corticoste-
rone) (4), behavioral (i.e., activity and food intake)
(21, 111), as well as autonomic and physiological
(i.e., temperature and glucose), contribute to pe-
ripheral clock gene rhythmicity (11, 42). Since their
discovery, clock genes have been shown to be in-
volved in many different (cellular) functions in pe-
ripheral organs, from metabolic function to cell
division (65).

Intercellular coupling seems to be critical for a
robust, endogenously rhythmic SCN that distin-
guishes it from peripheral oscillators (70). SCN
neuronal rhythmicity is translated into rhythmic
release of SCN neurotransmitters, imposing a cir-
cadian rhythm onto target neurons. These target
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neurons provide rhythmic behavioral, neuroendo-
crine, and autonomic output, supporting a circa-
dian organization of physiology. Through SCN
endogenous activity, behavioral and physiological
rhythms are maintained even in constant dark
conditions (DD) (39). This allows the organism to
anticipate day-night changes in the environment,
best preparing the physiology for upcoming chal-
lenges. Since behavioral activity needs to coincide
with, i.e., increased body temperature, higher cir-
culating glucose levels, and elevated blood pres-
sure, the main function of the SCN is to organize
these physiological set-points, optimally adapting
them to resting or active periods (48).

In this review, we will first discuss how the SCN
is able to drive multiple rhythms in physiology and
behavior and how the circadian system itself is
synchronized by feedback from its own effectors.
The perfect synchrony within this multiple oscilla-
tory system raises the question of what happens
when perturbing factors, such as changes in be-
havior elicited by shift work, disturb its equilib-
rium. Finding the answer has become more urgent,
since desynchronous behavior has been associated
with a wide range of pathology. The current hy-
pothesis is that ill-timed lifestyle patterns, i.e.,
(high-fat) food intake, light pollution, shift work, or
chronic jet lag, increase susceptibility to certain
diseases. This is based on emerging data that this
behavior, specific to humans, brings the individual
in conflict with the endogenous rhythm of its bio-
logical clock. Here, we will discuss how such de-
synchronization importantly changes many
physiological processes, from metabolism, im-
mune function, and cardiovascular regulation to
mental health. We will also address recent ad-
vances made in the treatment of disease specifi-
cally aimed at (re)synchronization of the circadian
system.

Circadian Synchronization
The Clock

The SCN, as an autonomously rhythmic nucleus,
distinguishes itself from other nuclei in the brain
through its structure and function. It generates a
rhythm in electrical activity, also in DD, with gen-
erally a higher frequency of neuronal firing during
the (subjective) day compared with the night. The
day-time peak in neuronal activity occurs equally
in nocturnal as in diurnal animals, indicating that
SCN activity alone does not determine behavioral
activity. Neuronal depolarization during the day is
driven by persistent Na� currents and oscillations
in chloride pumps, K� channels, and Ca2� pools.
This elicits increased excitability of SCN neurons
and facilitates spontaneous neuronal activity oc-
curring even in the absence of synaptic drive, thus

giving the SCN its endogenous rhythm. At night,
the reverse occurs, with neurons showing hyper-
polarization, inhibiting neuronal firing and silenc-
ing the SCN (20).

This circadian rhythm in electrical activity regu-
lates oscillatory transcription and translation of
genes inside individual SCN neurons. These clock
genes are part of an intrinsic oscillator, consisting
of interlinked autoregulatory transcriptional-trans-
lational feedback loops. This molecular mecha-
nism drives rhythmic, �24-h expression patterns
of core clock proteins necessary for the generation
and regulation of circadian rhythms within indi-
vidual cells (88). In mammals, protein complex
CLOCK (circadian locomotor output cycles kaput)-
BMAL1 (brain and muscle ARNT-like protein 1)
bound to E-box promoters form the positive limb
of the feedback loop. The negative limb consists of
PER-CRY, heterodimers that translocate back to
the nucleus suppressing their own transcription by
inhibiting CLOCK-BMAL1 activity. Secondary
loops are formed with the help of orphan nuclear
receptors from the REV-ERB and ROR family,
which fine tune the core clock machinery modu-
lating the transcriptional feedback loop, thus con-
tributing to the robustness of the molecular clock
(for detailed description, see Ref. 80). This molec-
ular circuitry is not only present in the SCN but in
nearly all (peripheral) cells so expressing their own
oscillations under influence of the SCN and pe-
ripheral signals (14).

Aside from this molecular machinery, the SCN
also expresses numerous neurotransmitters in-
volved in synchronizing and maintaining an en-
dogenous circadian rhythm of the SCN, while also
transmitting circadian timed signals to target neu-
rons in the hypothalamus. Based on the anatomi-
cal location of these different neural populations,
the SCN is generally divided into a ventrolateral
and dorsomedial region. The ventrolateral SCN,
associated with integrating external input, i.e., gas-
tric-releasing peptide (GRP)- and vasoactive intes-
tinal peptide (VIP)-expressing neurons receive
direct retinal input via the retinohypothalamic
tract (RHT). These neurons convey light-dark in-
formation to the rest of the SCN, with VIP critical in
maintaining SCN synchrony (2, 38, 100). The dor-
somedial SCN, where, i.e., arginine vasopressin
(AVP) and prokineticin 2 (PK2) is expressed, is as-
sociated with generating robust circadian rhythms
(1, 119). Also, GABA (co-expressed in GRP, VIP, and
AVP neurons) is essential in synchronizing SCN
neurons, adapting their activity through both ex-
citatory and inhibitory modulation (20). Interest-
ingly, exposure to long-day photoperiods changes
GABAergic activity from inhibitory to excitatory,
destabilizing SCN rhythmicity and possibly affect-
ing its sensitivity to photoperiodic entrainment
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(25). Also, neuromedin S, expressed in the majority
of VIP and AVP neurons, is important for SCN
synchrony (56). The ventral and dorsal SCN show
elaborate neuronal interconnectivity (89), under-
lining the essential role of internal SCN
communication.

Finally, coordination of rhythmicity among dif-
ferent cells within the SCN is achieved through
intercellular coupling by, i.e., presence of gap junc-
tions, glial network encoding, phase-dependent
coupling through non-redundant VIP and GABA
signaling, paracrine signaling, and through gluta-
matergic communication between the left and
right SCN (for review, see Ref. 20).

The SCN Drives Rhythms in Behavior,
Hormone Secretion, and Organ Function
Through Its Neuronal Activity

Many SCN neurons have an endogenous rhythm in
electrical activity (2, 20), which is the basis for the
rhythmic release of SCN neurotransmitters at their
terminals (14). However, in the rat, many neurons
show a nonrhythmic-low constant neuronal activ-
ity. For example, via constant release of glutamate
in the PVN, the SCN promotes melatonin release
from the pineal, which can only be prevented by
the diurnal rhythm of SCN-induced release of
GABA in the PVN (83). Nonetheless, the majority of
SCN neurons are more active during the light pe-
riod than during the dark period (66). Light is a
very powerful stimulus for neuronal activation of
the retino-recipient portion of the SCN, both dur-
ing the day as well as during the night (67). This
activation results in inhibition of locomotor behav-
ior, at least partially, by the release of Prokineticin
2 from its terminals (19). The daily light/dark cycle
synchronizes SCN neurons to a precise 24-h
rhythm, translated into appropriate behavior ac-
cording to the time of day and the corresponding
hormonal and autonomic signaling (14). This SCN
output serves to drive the functionality of the or-
gans both through the induced rhythm of clock
and other genes in the organs (77, 81) and by the
circadian rhythm of autonomic output (47).

The Hypothalamus as Integrative Neuronal
Network Regulating Physiology

SCN projections reach many different target neu-
rons-interneurons, endocrine neurons, preauto-
nomic neurons, and neurons that gate
physiologically relevant sensory information (13)–
through which a wide range of effector organs are
reached that have a somatotopic representation in
the SCN (53). This not only provides an anatomical
framework for the SCN to spread circadian signals
to hypothalamic targets, it also allows the SCN to
modulate the access of information entering the
hypothalamus. Until recently, it was assumed that

the SCN would execute its functions by means of
timed output that was only synchronized by the
light/dark cycle. However, light is not the sole in-
put or synchronizer of the SCN; melatonin (102),
food (69), blood pressure (12), and locomotor ac-
tivity (96) also have a direct effect on SCN neuronal
activity or its phase. Somatic information is re-
ceived through various direct projections from, i.e.,
the NTS, IGL, ARC, limbic system, and raphe nu-
cleus (12, 62, 92). As we will elaborate in this re-
view, we suggest the SCN is not a mere pacemaker
but part of a large network of oscillators all func-
tioning within series of feedback loops maintaining
the organism in synchrony with its environment
(FIGURE 1). In support of this notion, recent evi-
dence of functional input to the SCN from circum-
ventricular organs, brain stem viscerosensory
nuclei, and hypothalamic integration nuclei (8, 12,
78, 92, 121) suggests that the SCN is influenced by
peripheral signals entering the hypothalamus de-
pendent on the physiological state of the organism,
forming a complex integrative hypothalamic net-
work regulating homeostasis (FIGURE 1).

Peripheral Oscillators Synchronized by the
SCN

In the brain, apart from the SCN, autonomous
cellular rhythms are found in the olfactory bulb
and retina, whereas other structures, like the Arcu-
ate nucleus (ARC), are able to express an indepen-
dent rhythm for some time in vitro (30, 33, 108).
The general view is that clock genes in non-brain
tissues are not autonomously rhythmic; they de-
rive their rhythm from the SCN or from SCN-
driven processes. The loss of rhythm in peripheral
organs following SCN lesions is probably due to the
limited intercellular communication in peripheral
organs and the loss of synchronizing corticoste-
rone (4) or melatonin rhythm. This demonstrates
the role of the SCN as synchronizer of peripheral
rhythmicity, which is realized through various, still
not fully understood pathways. First, autonomic
output is capable of driving clock gene expression
(107), although autonomic denervation of an organ
does not abolish clock gene rhythmicity (17). Sec-
ond, glucocorticoids influence clock gene expres-
sion, but adrenalectomy does not abolish
rhythmicity (4). Third, food intake during the rest-
ing phase, although also affecting temperature and
glucocorticoid rhythms, completely reverses clock
gene expression in the liver, kidney, heart, and
pancreas (21), showing that food intake is an es-
sential synchronizing signal for peripheral organs.
However, under fasting conditions, the rhythm in
the liver persists for at least one cycle as it does in
food synchronized SCN-lesioned animals (91).
Fourth, SCN-lesioned animals sharing their blood
circulation with intact animals develop a rhythm in
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clock gene expression in the liver and kidney, in-
dicating that circulating factors are important for
their rhythmicity (35). Last, temperature, too, is
capable of altering clock gene expression in the
liver (11). Essentially, peripheral clock genes are
guided by direct and indirect signals from the SCN
and can be altered significantly in their expression
and phase by behavior that is not in line with SCN
signaling. This is adeptly illustrated by a recent
study demonstrating that animals receiving food
six times a day lose their rhythm in white adipose
tissue in seven of nine tested oscillatory metabolic/
adipokine genes but not the rhythm of clock genes.
Abolishing the daily corticosterone peak also ren-
dered the clock genes arrhythmic (105). This shows
that metabolic genes do not only depend on clock
genes for their rhythm but may depend on other
processes as well. Nonetheless, supporting a fun-
damental role for clock genes in peripheral organ
function are recent studies demonstrating that tis-
sue-specific deletion of a single core clock gene
fundamentally changes the functioning of the liver,
white adipose tissue, or blood vessels (54, 81, 82).
Seemingly, the rhythmicity or mere presence of
clock genes is essential for the expression or sup-
pression of regulatory genes present in tissues and
organs, organizing a cascade of rhythms (reviewed
in Ref. 52). The physiological importance of this
molecular organization, synchronized to the SCN,
can be concluded from observations showing re-
versed feeding rhythms inducing, along with in-
verted peripheral clock gene expression, steatosis
in the liver (95). In the next paragraphs, we will
discuss the importance of a circadian physiological
equilibrium for the well-being of an individual and
how changes in this balance may have deleterious
effects on health.

From Circadian Synchronization
and Balance to Divergence and
Disease
Metabolic Information: Multiple Sources
and Multiple Integration Sites

Such is the relevance of an optimal metabolic state,
that almost all physiological systems react to met-
abolic cues. Since the availability of food supply is
evolutionarily closely linked to the activity period,
the biological clock–in interaction with the hypo-
thalamus–plays an essential role in timing ade-
quate circadian metabolic control. This only
recently has become clear by experiments showing
that the SCN receives strong feedback of peripheral
metabolic signals. For example, the liver is capable
of sending a starvation signal by fibroblast growth
factor 21 (FGF21) secretion into the circulation,
directly reaching SCN receptors. This induces a
decrease of systemic insulin, an increase of corti-

costerone levels, an inhibition of growth, and a
change in locomotor activity and reproduction (8).

An important relay in transmitting metabolic
feedback is the Arcuate nucleus (ARC), the main
metabolic integration center of the hypothalamus.
For example, leptin, secreted by adipose tissue,
may target the SCN via the ARC since ablation of
leptin receptor-expressing neurons in the ARC
leads to the disruption of the circadian rhythm in
food intake (58). Similarly, deletion of ROCK1, a
key kinase in the signaling of leptin, leads to severe
diminishment of spontaneous daily locomotor ac-

FIGURE 1. Feedback networks of the circadian system
Our hypothesis on the functioning of the circadian system consists of multiple inter-
connected feedback loops regulating physiology. Illustrated are three interconnected
feedback loops: hypothalamus, brain stem/spinal cord, and periphery, within which, of
course, are many other feedback loops on cellular, tissue, and organ level. 1) Within
the hypothalamus, the suprachiasmatic nucleus (SCN) sends timing signals to several
target areas including the medial preoptic area (MnPO) for temperature regulation
and reproduction; paraventricular nucleus (PVN) for hormone release and autonomic
output; dorsomedial nucleus of the hypothalamus (DMH) as hypothalamic integration
center; arcuate nucleus (ARC) as center for sensory metabolic information. All these
nuclei are interconnected and the SCN receives direct feedback from all but the PVN.
2) The brain stem/spinal cord feedback loop receives direct and indirect temporal in-
formation through the rostral ventral lateral medulla (RVLM), nucleus tractus solitarius
(NTS), area postrema (AP), and the sensory layers lamina I–IV (I–IV) of the spinal cord.
These nuclei function as integration centers for peripheral and central signals and are
responsible for autonomic physiological reflexes transmitted to the dorsal motor nu-
cleus of the vagus (DMV) and intermediolateral column (IML) that serve as autonomic
output nuclei. 3) The periphery receives temporal signals from the hypothalamus via
autonomic output of the parasympathetic motor neurons in the DMV and via sympa-
thetic motoneurons in the IML. In addition, circadian signals are also transmitted via
hormones such as melatonin and corticosterone or by nutrients like glucose. The red
ovals represent structures that receive autonomic sensory feedback such as the area
postrema (AP), NTS, and the sensory layers lamina I–IV (I–IV) of the spinal cord; or
hormonal and metabolic feedback from the circulation such as the AP, ARC, and
SCN. Moreover, peripheral organs may communicate with each other via a circuit
consisting of autonomic sensory signaling to the AP, NTS, and I-IV of the spinal cord
followed by reflex automatic adjustment of autonomic output. Any disturbance or de-
synchrony between and within these circuits could, in time, potentially lead to pathol-
ogy and disease.
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tivity, suggesting an essential role for metabolic
feedback to the ARC in maintaining circadian
rhythmicity (44, 58). Moreover, circadian control of
temperature is dependent on concurring AVP and
�-MSH signaling from SCN and ARC to the medial
preoptic area (MnPO), orchestrating a time-depen-
dent temperature decrease (37). This illustrates the
need for the SCN to synchronize with metabolic
cues for adequate control of physiology. These
metabolic cues are also potentially important for
rhythmicity, as illustrated by observations that
metabolic signals originating from the ARC (121),
the lateral hypothalamus (LH) (5), or the inter-
geniculate leaflet (IGL) are capable of changing the
activity of the ventral SCN (92). Considering the
ventrolateral region is associated with synchroniz-
ing the SCN, this could provide a pathway for the
synchronizing effect of food on the SCN. This, for
example, was shown in hypocaloric food-restricted
animals, whereby, in contrast to normocalorie-fed
animals, feeding cues were able to alter SCN clock
gene oscillations (68).

In vivo lesioning studies have demonstrated the
importance of the network properties of the me-
diobasal hypothalamus in maintaining circadian
rhythmicity (27), thus confirming early studies
showing loss of activity rhythm due to knife cuts
posterior to the SCN (71). Altogether, this argues
for a system where the SCN coupled to other hy-
pothalamic nuclei (and peripheral organs) form a
network of oscillators essential for maintaining cir-
cadian rhythmicity.

This may explain why long-term desynchronous
metabolic feedback has a deleterious effect on the
circadian system and on health. In rodents, high-
fat diet or food intake during the rest phase has
been shown to desynchronize and dampen clock
gene rhythmicity (21), leading to obesity, insulin
resistance (23), and cardiovascular disease (81),
thus providing a link as to why these diseases,
including cancer, have a high incidence in shift-
workers (22, 51). Another example is humans with
night-eating syndrome, where high caloric intake
during the resting phase disrupts the normal cir-
cadian pattern and results in a tendency to develop
obesity (43). (For a detailed review of metabolic
desynchronization and consequential health ef-
fects, see Ref. 26.)

Since behavior and SCN clock genes can also be
synchronized to food (55, 68), food may have a
protective effect on desynchrony. This is shown in
a rat model of shift work, whereby restricting food
intake to the normal activity period while working
in the rest period induces a significantly lower
weight gain and an increased insulin sensitivity
compared with ad libitum shift-worker animals
(94). This shows that the hypothalamic circadian
system, with the SCN at its core, is a complex,

reciprocally connected network that organizes
metabolic homeostasis of the body and is capable
of being (de)synchronized through peripheral sig-
nals (FIGURE 2). In the next paragraphs, we will
give examples of how SCN-driven physiological
rhythms are not driven in isolation but depend on
each other to become fully rhythmic.

Temperature: Circadian and Metabolic
Influences

Ahead of the active phase, core body temperature
(Tb) starts to increase, independent of locomotor
activity, whereas Tb drops just before activity ces-
sation in the resting phase (86, 98). The central role
of the SCN in the metabolic and temperature-reg-
ulating network becomes clear when it is noted
that SCN lesions prevent not only temporal Tb
rhythmicity but also fasting-induced Tb decrease
(60). This temperature decrease is preceded by a
drop in metabolic rate, hinting at a significant role
for the ARC. Hereby, numerous hypothalamic nu-
clei, i.e., dorsomedial hypothalamus (DMH), ven-
tromedial hypothalamus (VMH), ARC, and MnPO
with the SCN at its core, are all jointly involved in
temperature control (72), revealing a complex tem-
perature-regulating network. On the basis of ob-
served interactions between the SCN and ARC (36,
93), it was shown that Tb rhythm depends on in-
terplay between temporal signals from the SCN
and metabolic signals arising from the ARC (37).
Not only is an SCN-driven rhythm of ARC neurons
essential for this, it also requires a synchronized
release of SCN vasopressin and ARC �-MSH neu-
rotransmitters in the MnPO to organize diurnal
temperature decreases in rats. Lesions of specific
ARC neuronal populations or severance of recipro-
cal connections between the SCN and the ARC
critically modify circadian patterns in corticoste-
rone release, food intake, temperature, sleep, and
locomotor activity (58, 117). These observations
suggest that uncoupling the SCN from metabolic
integration sites like the ARC may be an important
factor for circadian desynchronization and the de-
velopment of metabolic disease.

The Hypothalamic-Pituitary-Adrenal Axis
and the Preparation for Activity and
Food

The hypothalamic-pituitary-adrenal (HPA) axis
is under strong control of the SCN. SCN-induced
release of vasopressin in the beginning of the
sleep phase has a strong inhibitory influence on
the secretion of ACTH and corticosterone (49),
whereas diminishing this inhibitory input toward
the beginning of the active period induces the
diurnal peak in corticosterone, preparing the an-
imals for activity onset. Interestingly, crepuscu-
lar animals, active at dusk and dawn, have two
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SCN-driven peaks of corticosterone (50). Closely
associated with, but not driven by, corticoste-
rone is the peak of circulating glucose. Cortico-
sterone signaling to the ARC reduces hepatic
insulin sensitivity (122), creating a perfect har-
mony between the corticosterone and glucose
peaks, whose rhythms are synchronized by the
SCN. This observation also explains why such

strong metabolic alterations are observed in hy-

percortisolism. The same is seen in stress disor-

ders or in chronic jet lag/shift work mimicking

the effects of chronic stress, causing increased
glucocorticoid production, which is correlated
with developing diabetes and obesity (52).

Locomotor Activity Fine-Tunes SCN
Rhythmicity

Locomotor activity, closely associated with
arousal, has an effect on SCN neuronal activity and
synchronization of the circadian system, although
at a much lower intensity than light. Nevertheless,
activity has been shown to directly inhibit the neu-

FIGURE 2. Proposed organization of synchrony in the circadian system
Whether an organism is in equilibrium depends on whether the multitude of circadian rhythms expressed are in synchrony or oppose each
other. A synchronized and healthy situation is depicted on the left where light synchronizes the activity and rhythm of the SCN. The SCN
transmits this rhythm via the autonomic nervous system (ANS), hormone secretion, and behavior to the body, thus synchronizing the periph-
ery and adjusting the physiology according to time of day (red arrow). In turn, the periphery sends feedback to the brain via metabolites,
hormones, and autonomic sensory pathways (green arrow). The periphery, through release of hormones and metabolites and in concert with
autonomic signaling, also affects locomotor activity and foraging behavior (green arrow). Behavior, through locomotor activity or eating be-
havior, feeds back to the periphery and the brain (blue arrows), amplifying circadian rhythmicity and synchrony. When, as depicted on the
right, the light-dark cycle, behavior, and peripheral signals do not align with that of the SCN or the hypothalamus (broken arrows), the dele-
terious feedback interferes with the circadian system equilibrium, which in the long term could potentially lead to desynchrony and de-
velopment of disease. Chronotherapy in the form of circadian-timed drug administration or synchronizing sleeping/eating behavior with
the light-dark cycle (orange arrow) can augment circadian system resynchronization, potentially reversing pathology and reducing disease.
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ronal firing in the SCN, especially during the sub-
jective day (96, 120). Thus activity may be a
potential (de)synchronizer of the circadian system.
The synchronizing property is seen in daily forced
locomotor activity in DD: when the forced activity
is halted, free-running rhythm runs closer to 24 h
than the prior basal free-running rhythm, even in
Vipr2�/� mice (45). Activity may also feed back on
areas outside the SCN; for example, the Raphe
nucleus is known to be important for the synchro-
nization of SCN neuronal activity through its sero-
tonin projections, i.e., by desensitizing the SCN to
light (62, 109). The SCN and hypothalamus take
turns to synchronize the Raphe nucleus through
locomotor activity and corticosterone; they both
target and induce rhythmicity in serotonin synthe-
sis (62). This is significant because it illustrates how
the SCN receives feedback related to its own out-
put and is able to synchronize, through locomotor
activity and corticosterone release, serotonin syn-
thesis. Another example is melatonin secretion;
driven by the SCN at night, it also enforces the
night signal through melatonin receptors in the
SCN (9, 87). These examples illustrate how impor-
tant amplification of the proper circadian rhythms
can be for maintaining or restoring adequate phys-
iological function.

(Re)synchronizing the Cardiovascular
System

Cardiovascular incidents follow a circadian rhythm
that has its highest incidence early in the activity
period (73), suggesting the involvement of the cir-
cadian system in cardiovascular pathology. Recent
studies have also emphasized a role for peripheral
clock genes in cellular processes associated with
blood pressure control. Within the adrenal, ab-
sence of cry has been associated with hyperaldo-
steronism and hypertension (24). In the kidney, the
absence of per1 was associated with the regulation
of renal epithelial sodium channels (34). Other
clock genes have been implicated in vascular en-
dothelial function (18, 113) or in thrombogenesis
(116), with potential relevance for humans (97).
Still, the prevention of vascular pathology is de-
pendent on the integrity and rhythmicity of the
circadian system as a whole and not the mere
consequence of bmal1 deficiency or clock muta-
tion alone (28).

Chronic changes in the SCN have been observed
in both hypertensive humans and rats (29, 84),
showing a link between an altered circadian sys-
tem and disease. The importance of the SCN not
only as a master clock but also as an integration
site in the physiological circuits regulating blood
pressure is illustrated by the observation that the
SCN receives cardiovascular feedback via the NTS
(12). This indicates that untimely changes in blood

pressure, which may occur in shift work, jet lag, or
long activity at night, may disturb the functionality
of the SCN via this feedback pathway.

In a mouse model of induced cardiac hypertro-
phy, desynchronization through shortened light-
dark cycles significantly increased cardiac
pathology compared with synchronized animals.
Restoration of the natural circadian rhythm fully
reversed the pathophysiology seen in those ani-
mals (64). This suggests that circadian desyn-
chrony can contribute greatly to the progression of
organ dysfunction and development of disease,
whereas restoration of circadian rhythmicity po-
tently reverses pathology. In recent years, chrono-
pharmacology has thus developed into a
potentially effective way of treating cardiovascular
disease associated with circadian desynchroniza-
tion; e.g., the treatment of “non-dipper” hyperten-
sive patients is more effective when the therapeutic
window of anti-hypertensive drugs is aimed to
match the physiological trough in blood pressure
(40). Also, evening administration of low-dose as-
pirin significantly reduces morning platelet reac-
tivity and thus the risk of thrombo-embolic events,
which peak early in the morning (7). Interestingly,
repetitive nighttime melatonin administration,
known to amplify the rhythm of melatonin secre-
tion via an action on the SCN (9), substantially
reduces blood pressure in hypertensive patients
(99). It can be inferred that synchrony between the
cardiovascular system and the SCN is essential for
homeostasis, whereas desynchronization within
this system could ultimately result in the develop-
ment of cardiovascular disease.

Synchronizing the Immune System

The circadian system has a strong influence on the
immune system, e.g., mortality is greater when
bacterial endotoxin LPS (lipopolysaccharide) is
given to rodents during the night, a time that co-
incides with increased pro-inflammatory cytokine
production after LPS (63). It is suggested that the
SCN is incorporated into a regulatory circuit be-
tween the immune system and the brain, as shown
by the activation of the SCN following an inflam-
matory stimulus. Ablation of the SCN amplifies
the innate immune response several fold, sug-
gesting inhibitory influence of the SCN (32).
Clock genes in immune cells also play an impor-
tant role in the immune response (101), empha-
sizing the role of the circadian system. Cytokine
interferon-�, used in cancer treatment, has a
strong disruptive effect on locomotor activity and
body temperature as well as on clock gene expres-
sion in the SCN. These adverse effects are for a
large part prevented by changing the time of ad-
ministration (76), emphasizing the strong interac-
tion between circadian regulation and the immune
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system. Circadian desynchronization induced by
shift work in rats is associated with an enhanced
inflammatory response that was prevented by syn-
chronizing food with the normal feeding time (31).
For that reason, therapies limiting food intake to
the normal activity period may help to balance the
immune response and may prevent development
of inflammatory diseases.

Since the discovery of oscillatory clock gene ex-
pression in tumors, chrono-pharmacological can-
cer treatment, i.e., finding the optimal times for
drug administration based on circadian variation
in drug pharmacokinetics, efficacy, and tolerance,
has received much attention and appears promis-
ing. Studies show that chrono-chemotherapy im-
proved therapeutic outcome and survival for
numerous types of cancer in humans (46).

Aligning the Reproductive System

Looking at the reproductive cycle, the SCN is es-
sential for integrating and synchronizing all neu-
roendocrine signals involved in initiating a well
timed GnRH-LH surge (103). Several studies have
shown the importance of direct SCN signaling,
through VIP (106, 110) and vasopressin (79), in
interaction with the kisspeptinergic system (103),
for accurately timing the LH surge. However, re-
production does not solely depend on a correctly
functioning SCN: without peripheral signals, i.e.,
about the metabolic state of the body, a reproduc-
tive cycle cannot be completed. A liver-neuroen-
docrine signaling pathway has recently been
described through which FGF21, a fasting-induced
hepatokine, acts through the SCN, suppressing the
vasopressin-kisspeptin signaling cascade and
thereby inhibiting ovulation during starvation (78).
Other fasting-elicited hormonal changes, such as
low leptin levels, also prevent a successful cycle (6).
These examples show that not only circadian tim-
ing but also synchronized metabolic and physio-
logical feedback is essential for a successful
reproductive cycle.

Circadian Dysfunction in Psychiatric
Disorders and Their Treatment

People suffering from depression, bipolar disorder
(75), anxiety, or schizophrenia (118) exhibit fatigue,
changes in sleep, appetite, and body weight, and
circadian desynchronization. Patients exhibit
dampened temperature rhythms (3), altered corti-
sol levels (114) (itself a predictor for the course of
illness), and melatonin secretion (57). Other visible
features of chronic circadian desynchronization
associated with psychiatric disorders are metabolic
syndrome, obesity, diabetes, hypertension, and
dyslipidemia (112), all contributing to premature
death occurring up to 10 years earlier compared
with the general population.

Clinically depressed individuals exhibit clock
gene dysregulation in specific brain areas, abnor-
mal phasing of clock gene expression, and poten-
tially disrupted phase relationships between
individual circadian genes, suggesting a desyn-
chronization within the circadian network (59).
This is supported by the observation that multiple
simultaneous chronotherapeutic interventions
aimed at synchronizing the circadian system, in
the form of bright light therapy and advancing the
sleep phase, are an effective treatment for sus-
tained improvement in severely depressed patients
(16). Interestingly, many pharmacological agents
for the treatment of psychiatric disorders, i.e.,
olanzapine, quetiapine, have large cardiovascular
and metabolic side effects but are under-acknowl-
edged and undertreated (104). Synchronizing the
circadian system by administration of nightly
melatonin significantly decreases drug-induced
proneness to obesity and blood pressure altera-
tions (90). This finding reaffirms an important role
of melatonin in synchronizing the circadian system
and prevention of cardiovascular and metabolic
pathology, also in relation to adverse effects asso-
ciated with antipsychotic drugs.

Conclusions and Future Directions

Here, we have argued that, with the SCN at its
center, the circadian system forms a coupled
multi-oscillatory system, wherein each part re-
ceives a multitude of signals, fine-tuning circadian
rhythmicity. The oscillatory organization of this
system is maintained through the central rhythm
of the SCN that, through hormonal, neuronal, or
behavioral signals, fine tunes bodily functions to
the activity or resting period. The autonomous
rhythm of the SCN is augmented and fortified
through cerebral and peripheral feedback, making
the circadian system more robust and less prone to
environmental variations. However, long-term
perturbations through drug use, untimely light, or
disorderly behavior will induce peripheral signal-
ing capable of disrupting this harmony, rendering
an individual more susceptible to desynchrony and
disease. This makes clear that the SCN does not
only function as a sophisticated timing mechanism
but is integrated in multiple oscillatory feedback
circuits involved in the regulation of physiological
and behavioral functions.

The proneness of oscillatory networks to desyn-
chronization has recently been analyzed through a
mathematical model of the evolution of feedback
networks in bacteria, fungi, and drosophila (74).
The robustness of a network was demonstrated to
be dependent on the number of interconnections
and the number of regulators per connection, with
an increasing number of interconnections and reg-
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ulators associated with an increase in robustness.
This is also illustrative for the circadian systems
functioning, e.g., by the molecular feedback loops
controlling clock gene rhythmicity inside individ-
ual SCN neurons. In turn, these weakly rhythmic
individual neurons (41) function inside a larger
coupled network, making up the SCN, driving a
common rhythm and regulating its circadian out-
put. Considering the here-reviewed studies, the
SCN is in turn incorporated in a larger hypotha-
lamic network of oscillators integrating peripheral
signals. Finally, behavior and external stimuli like
food intake or drug (ab)use also have their place in
the feedback circuitry of the organism, adjusting
adequate circadian function (FIGURE 2). The com-
plex nature of the circadian system makes it robust
and capable of withstanding brief erroneous feed-
back, but years of conflicting feedback, ill-timed
behavior, or chronic jet lag/shift work will increase
susceptibility to pathology and disease. The com-
plex nature of this circadian network also suggests
that it will take time before the full complexity of
the circadian system will be understood. We and
others (10) suggest that a holistic approach will be
crucial in filling in the many gaps in knowledge of
the circadian system. Many current developments
in (molecular) chronobiology, such as in vitro anal-
ysis, conditional knockout animals, and optogenet-
ics are doubtlessly invaluable and indispensable in
present chronobiology research. However, consid-
ering the complexity of the circadian network, cau-
tion should be exercised in extrapolating
conclusions from such investigations into in vivo
models. For example, despite in vitro data suggest-
ing the direct production of NAMPT via CLOCK/
BMAL1 (85), it has been observed that, in animals
eating during the light period, NAD� and NAMPT,
together with certain metabolic genes, do not fol-
low the inversion of rhythm in core clock genes like
CLOCK/BMAL1 (95). These observations indicate
that in vivo, alternative essential molecular rela-
tionships prevail, likely driven by other compo-
nents of the circadian system, such as melatonin or
corticosterone. Testing isolated brain areas in vitro
or selectively activating small populations of neu-
rons in vivo through optogenetics gives insight into
an isolated stimulus response but fails to give a full
picture as to how systemic physiological processes
are truly regulated. Basic physiological experimen-
tation and research is thus still very important for
an understanding of physiological functions of the
organism as a whole. �
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